Scalar Products of Symmetric Functions and Matrix Integrals

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Soliton Theory, Symmetric Functions and Matrix Integrals

We consider certain scalar product of symmetric functions which is parameterized by a function r and an integer n. One the one hand we have a fermionic representation of this scalar product. On the other hand we get a representation of this product with the help of multi-integrals. This gives links between a theory of symmetric functions, soliton theory and models of random matrices (such as a ...

متن کامل

Effective scalar products of D-finite symmetric functions

Many combinatorial generating functions can be expressed as combinations of symmetric functions, or extracted as sub-series and specializations from such combinations. Gessel has outlined a large class of symmetric functions for which the resulting generating functions are D-finite. We extend Gessel’s work by providing algorithms that compute differential equations these generating functions sa...

متن کامل

Tau Functions and Matrix Integrals

We consider solvable matrix models. We generalize Harish-Chandra-Itzykson-Zuber and certain other integrals (Gross-Witten integral and integrals over complex matrices) using the notion of tau function of matrix argument. In this case one can reduce matrix integral to the integral over eigenvalues, which in turn is certain tau function. The resulting tau functions may be analyzed either by the m...

متن کامل

Integrals of Products of Hermite Functions

We compute the integrals of products of Hermite functions using the generating functions. The precise asymptotics of products of 4 Hermite functions are presented below. This estimate is relevant for the corresponding cubic nonlinear equation.

متن کامل

Sums of divisor functions in and matrix integrals

We study the mean square of sums of the kth divisor function dk(n) over short intervals and arithmetic progressions for the rational function field over a finite field of q elements. In the limit as q → ∞ we establish a relationship with a matrix integral over the unitary group. Evaluating this integral enables us to compute the mean square of the sums of dk(n) in terms of a lattice point count...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Theoretical and Mathematical Physics

سال: 2003

ISSN: 0040-5779

DOI: 10.1023/b:tamp.0000007916.13779.17